Global stability analysis for cosmological models with nonminimally coupled scalar fields

We explore dynamics of cosmological models with a nonminimally coupled scalar field evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models including the Hilbert-Einstein curvature term and the N degree monomial of the scalar field nonminimally coupled to gravity. The potential of the scalar field is the n degree monomial or polynomial. We describe several qualitatively different types of dynamics depending on values of power indices N and n. We identify that three main possible pictures correspond to n2N cases. Some special features connected with the important cases of N=n (including the quadratic potential with quadratic coupling) and n=2N (which shares its asymptotics with the potential of the Higgs-driven inflation) are described separately. A global qualitative analysis allows us to cover the most interesting cases of small N and n by a limiting number of phase-space diagrams. The influence of the cosmological constant to the global features of dynamics is also studied. © 2014 American Physical Society.

Авторы
Skugoreva M.A. 1 , Toporensky A.V. 2, 3 , Vernov S.Yu.4
Редакторы
-
Издательство
-
Номер выпуска
6
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
064044
Том
90
Год
2014
Организации
  • 1 Peoples Friendship University of Russia, Moscow, 117198, Russian Federation
  • 2 Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
  • 3 Kazan Federal University, Kremlevskaya 18, Kazan, 420008, Russian Federation
  • 4 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4827/