Coincidence points principle for mappings in partially ordered spaces

The concept of covering (regularity) for mappings in partially ordered spaces is introduced. Sufficient conditions for the existence of coincidence points and minimal coincidence points of isotone and orderly covering mappings are obtained. These results generalize classical fixed point theorems for isotone mappings. Moreover, the known theorems on coincidence points of covering and Lipschitz mappings in metric spaces are deduced from the obtained results. © 2014 Elsevier B.V. All rights reserved.

Редакторы
-
Издательство
-
Номер выпуска
-
Язык
Английский
Страницы
13-33
Статус
Опубликовано
Подразделение
-
Номер
-
Том
179
Год
2015
Организации
  • 1 Peoples' Friendship University of Russia, M.-Maklaya str., 6, Moscow, 117198, Russian Federation
  • 2 Tambov State University, Internatsionalnaya str., 33, Tambov, 392000, Russian Federation
Ключевые слова
06A06; 54H25; Coincidence point; Orderly covering mapping
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4708/