On horizons and wormholes in k-essence theories

We study the properties of possible static, spherically symmetric configurations in k-essence theories with the Lagrangian functions of the form F(X), X ≡ ϕ,αϕ,α. A no-go theorem has been proved, claiming that a possible black-hole-like Killing horizon of finite radius cannot exist if the function F(X) is required to have a finite derivative dF/dX. Two exact solutions are obtained for special cases of kessence: one for F(X) = F0X1/3, another for F(X) = F0|X|1/2 − 2Λ, where F0 and Λ are constants. Both solutions contain horizons, are not asymptotically flat, and provide illustrations for the obtained nogo theorem. The first solution may be interpreted as describing a black hole in an asymptotically singular space-time, while in the second solution two horizons of infinite area are connected by a wormhole. © 2016, Pleiades Publishing, Ltd.

Авторы
Bronnikov K.A. 1, 2, 3 , Fabris J.C.3, 4 , Rodrigues D.C.4
Номер выпуска
1
Язык
Английский
Страницы
26-31
Статус
Опубликовано
Том
22
Год
2016
Организации
  • 1 VNIIMS, Ozernaya ul. 46, Moscow, 119361, Russian Federation
  • 2 Institute of Gravitation and Cosmology, PFUR, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
  • 3 National Research Nuclear University “MEPhI,”, Kashirskoe sh. 31, Moscow, 115409, Russian Federation
  • 4 Universidade Federal do Espírito Santo, Vitória, ES, CEP29075-910, Brazil
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/4349/