On the Chromatic Numbers of Integer and Rational Lattices

In this paper, we give new upper bounds for the chromatic numbers for integer lattices and some rational spaces and other lattices. In particular, we have proved that for any concrete integer number d, the chromatic number of ℤnwith critical distance 2d has a polynomial growth in n with exponent less than or equal to d (sometimes this estimate is sharp). The same statement is true not only in the Euclidean norm, but also in any lpnorm. Moreover, we have given concrete estimates for some small dimensions as well as upper bounds for the chromatic number of ℚp n, where by ℚpwe mean the ring of all rational numbers having denominators not divisible by some prime numbers. © 2016, Springer Science+Business Media New York.

Авторы
Редакторы
-
Издательство
Springer New York LLC
Номер выпуска
5
Язык
Английский
Страницы
687-698
Статус
Опубликовано
Подразделение
-
Номер
-
Том
214
Год
2016
Организации
  • 1 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3930/