Theory of (q 1, q 2)-quasimetric spaces and coincidence points

We introduce (q1, q2)-quasimetric spaces and examine their properties. Covering mappings between (q1, q2)-quasimetric spaces are investigated. Sufficient conditions for the existence of a coincidence point of two mappings acting between (q1, q2)-quasimetric spaces such that one is a covering mapping and the other satisfies the Lipschitz condition are obtained. © 2016, Pleiades Publishing, Ltd.

Авторы
Arutyunov A.V. 1, 2 , Greshnov A.V.3, 4
Журнал
Номер выпуска
1
Язык
Английский
Страницы
434-437
Статус
Опубликовано
Том
94
Год
2016
Организации
  • 1 RUDN University, ul. Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
  • 2 Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119992, Russian Federation
  • 3 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
  • 4 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090, Russian Federation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3896/
Поделиться

Другие записи