On the Borsuk-Ulam Theorem for Lipschitz Mappings on an Infinite-Dimensional Space

The solvability of the equation A(x) = f(x) on the sphere of a Hilbert space and the dimension of its solution set are studied in the case where A is a closed surjective operator and f is an odd Lipschitz mapping. A kind of analogue of the infinite-dimensional version of the Borsuk-Ulam theorem is obtained. © 2019, Springer Science+Business Media, Inc.

Авторы
Номер выпуска
1
Язык
Английский
Страницы
61-64
Статус
Опубликовано
Том
53
Год
2019
Организации
  • 1 Voronezh State University, Voronezh, Russian Federation
  • 2 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
contraction mapping; Lipschitz constant; surjective operator; topological dimension
Цитировать
Поделиться

Другие записи