Hydrothermal generation, structural versatility and properties of metal(ii)-organic architectures driven by a pyridine-tricarboxylic acid

An aromatic tricarboxylic acid, 4-(6-carboxy-pyridin-3-yl)-isophthalic acid (H3cpia), was applied as a building block for the hydrothermal syntheses of a new series of twelve metal(ii) (M = Mn, Co, Ni, Zn, Cd, Pb) coordination compounds, namely [Mn(H2cpia)2(H2O)2] (1), [M(Hcpia)(phen)(H2O)2] (M = Co, 2; Ni, 3; Zn, 4), [Zn(Hcpia)(2,2′-bipy)(H2O)2]5·4H2O (5), [Zn2(μ-Hcpia)2(2,2′-bipy)2] (6), [M(μ-Hcpia)(phen)(H2O)]n (M = Co, 7; Cd, 8), {[Pb(μ4-Hcpia)]·2H2O}n (9), [Cd4(μ3-cpia)2Cl2(phen)6(H2O)2]·10H2O (10), {[Zn3(μ3-cpia)2(phen)3]·10H2O}n (11), and {[Zn4(μ4-cpia)2(μ-OH)2(μ-4,4′-bipy)2]·4,4′-bipy·2H2O}n (12). These products were assembled from aqueous mixtures containing metal(ii) chlorides, H3cpia as a main tricarboxylic acid block, sodium hydroxide and an optional N-donor crystallization mediator (i.e., 1,10-phenanthroline, phen; 2,2′-bipyridine, 2,2′-bipy; or 4,4′-bipyridine, 4,4′-bipy). Compounds 1-12 were fully characterized by standard solid-state methods (IR spectroscopy, elemental analysis, TGA, PXRD, and single-crystal X-ray diffraction). Their structures range from discrete 0D monomers (1-5), dimer (6) or tetramer (10) to 1D coordination polymers (7, 8, and 11) and 2D metal-organic layers (9 and 12). Structural and topological features of H-bonded and metal-organic architectures were highlighted, showing that the structural diversity of 1-12 is influenced by the type of metal(ii) node, the level of deprotonation of H3cpia, reaction temperature, and presence of crystallization mediator. Thermal behavior, magnetic, luminescent and photocatalytic properties of selected compounds were investigated and discussed. In fact, cobalt(ii) coordination polymer 7 acts as a stable and recycable photocatalyst for the oxidative UV-light-assisted degradation of an organic dye in aqueous medium; methylene blue was used as a model dye pollutant in waste water. Finally, the obtained products 2 and 4-12 represent the first examples of Co, Zn, Cd, and Pb coordination compounds derived from H3cpia, thus introducing its application as a multifunctional picolinate-isophthalate building block for the generation of metal-organic architectures. © 2019 The Royal Society of Chemistry.

Авторы
Zhao N.1 , Li Y.1 , Gu J.-Z.2 , Kirillova M.V.3 , Kirillov A.M. 3, 4
Журнал
Издательство
Royal Society of Chemistry
Номер выпуска
23
Язык
Английский
Страницы
8361-8374
Статус
Опубликовано
Том
48
Год
2019
Организации
  • 1 Guangdong Research Center for Special Building Materials and Its Green Preparation Technology, Guangdong Industry Polytechnic, Guangzhou, 510300, China
  • 2 College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
  • 3 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
  • 4 Peoples' Friendship University of Russia, RUDN University, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
Дата создания
19.07.2019
Дата изменения
19.07.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/38865/
Поделиться

Другие записи