Relativistic algebra of space-time and algebrodynamics

We consider a manifestly Lorentz-invariant form L of the biquaternion algebra and its generalization to the case of a curved manifold. The conditions of L-differentiability of L-functions are formulated and considered as the primary equations for fundamental fields modeled with such functions. The exact form of the effective affine connection induced by L-differentiability equations is obtained for flat and curved manifolds. In the flat case, the integrability conditions of the connection lead to self-duality of the corresponding curvature, thus ensuring that the source-free Maxwell and SL(2,ℂ) Yang-Mills equations hold on the solutions of the L-differentiability equations. © 2016, Pleiades Publishing, Ltd.

Авторы
Kassandrov V.V. 1 , Rizcallah J.A.2
Редакторы
-
Издательство
-
Номер выпуска
3
Язык
Английский
Страницы
230-233
Статус
Опубликовано
Подразделение
-
Номер
-
Том
22
Год
2016
Организации
  • 1 Institute of Gravitation and Cosmology, Peoples’ Friendship University of Russia, Moscow, Russian Federation
  • 2 School of Education, Lebanese University, Beirut, Lebanon
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3884/