Carleman estimates for the time-fractional advection-diffusion equations and applications

In this article, we prove Carleman estimates for the generalized time-fractional advection-diffusion equations by considering the fractional derivative as perturbation for the first order time-derivative. As a direct application of the Carleman estimates, we show a conditional stability estimate for a lateral Cauchy problem for the time-fractional advection-diffusion equation, and we also investigate the stability of an inverse source problem. © 2019 IOP Publishing Ltd.

Авторы
Huang X.1 , Li Z.3 , Yamamoto M. 1, 2
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
4
Язык
Английский
Статус
Опубликовано
Номер
045003
Том
35
Год
2019
Организации
  • 1 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
  • 2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 3 School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong, 255049, China
Ключевые слова
Carleman estimate; Inverse source problem; Lateral Cauchy problem; Time-fractional advection-diffusion equation
Дата создания
19.07.2019
Дата изменения
19.07.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/38721/