Functional equation for the crossover in the model of one-dimensional Weierstrass random walks

We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion. © 2016, Pleiades Publishing, Ltd.

Авторы
Rudoi Y.G. 1 , Kotel’nikova O.A.2
Редакторы
-
Издательство
-
Номер выпуска
3
Язык
Английский
Страницы
1818-1823
Статус
Опубликовано
Подразделение
-
Номер
-
Том
189
Год
2016
Организации
  • 1 Peoples’ Friendship University of Russia, Moscow, Russian Federation
  • 2 Lomonosov Moscow State University, Moscow, Russian Federation
Ключевые слова
anomalous diffusion; fractal dimension; functional pressure; Markov process; normal diffusion; Weierstrass function
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/3721/