Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis

Background and aims: Carbon (C) and nitrogen (N) availability in soil change microbial community composition and activity and so, might affect soil organic matter (SOM) decomposition as well as allocation of plant assimilates. The study was focused on interactions between C and N availability and consequences for rhizodeposition and microbial community structure in paddy soil. Methods: Rice continuously labeled in a 13CO2 atmosphere was fertilized with either carboxymethyl cellulose (CMC) (+C), ammonium sulfate (+N), or their combination (+CN), and unfertilized soil was used as a control. 13C was traced in aboveground and belowground plant biomass, soil organic matter, and microbial biomass. Microbial community composition was analyzed by phospholipid fatty acids (PLFAs). Results: +CN application led to a higher yield and lower root C and N content: 13C assimilated in shoots increased by 1.39-fold and that in roots decreased by 0.75-fold. Correspondingly, after +CN addition, 13C from rhizodeposits incorporated into SOM and microorganisms decreased by 0.68-fold and 0.53-fold, respectively, as compared with that in the unfertilized soil. The application of +C or + N alone resulted in smaller changes. CMC led to a 3% of total N mobilized from SOM and resulted in a positive priming effect. Both fertilizations (+C, +N, or + CN) and plant growth stages affected soil microbial community composition. With decreasing microbial biomass C and N, and PLFA content under +CN amendment, +CN fertilization decreased Gram-positive (G+)/ Gram-negative (G-) ratios, and resulted in lower G+ bacteria and fungi abundance, whereas G- and actinomycetes were stimulated by N fertilization. Conclusions: Organic C fertilization led to a positive N priming effect. Organic C and mineral N application decreased C input by rhizodeposition associated with lower 13C recovery in SOM and microbial incorporation. C and N addition also altered microbial community composition, as +CN decreased content of microbial groups, such as G+ bacteria and fungi, but +N stimulated G- bacteria and actinomycetes. © 2018, Springer Nature Switzerland AG.

Zhao Z.1, 2 , Ge T.2 , Gunina A.3 , Li Y.2 , Zhu Z.2 , Peng P.4 , Wu J.2 , Kuzyakov Y. 1, 5, 6
Springer International Publishing
  • 1 Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystems, Georg-August University of Göttingen, Göttingen, 37077, Germany
  • 2 Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
  • 3 Department of Soil Biology and Biochemistry, Dokuchaev Soil Science Institute, Moscow, Russian Federation
  • 4 College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
  • 5 Agro-Technology Institute, RUDN University, Moscow, Russian Federation
  • 6 Institute of Environmental Sciences, Kazan Federal University, Kazan, 420049, Russian Federation
Ключевые слова
Belowground photosynthate allocation; Continuous 13CO2 labeling; GC-IRMS; N priming effect; Phospholipid fatty acid analysis; Rice rhizodeposition
Дата создания
Дата изменения
Постоянная ссылка

Другие записи