Basics of the Quasiconformal Analysis of a Two-Index Scale of Spatial Mappings

We define a scale of mappings that depends on two real parameters p and q, n−1 ≤ q ≤ p < ∞ and a weight function θ. In the case of q = p = n, θ ≡ 1, we obtain the well-known mappings with bounded distortion. Mappings of a two-index scale inherit many properties of mappings with bounded distortion. They are used for solving a few problems of global analysis and applied problems. © 2018, Pleiades Publishing, Ltd.

Авторы
Vodopyanov S.K. 1, 2, 3
Номер выпуска
5
Язык
Английский
Страницы
805-834
Статус
Опубликовано
Том
59
Год
2018
Организации
  • 1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation
  • 2 Novosibirsk State University, Novosibirsk, Russian Federation
  • 3 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
capacity estimate; quasiconformal analysis; Sobolev space; theorem on removable singularities
Дата создания
04.02.2019
Дата изменения
04.02.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/36331/
Поделиться

Другие записи