On the Existence in the Sense of Sequences of Stationary Solutions for Some Systems of Non-Fredholm Integro-differential Equations

We prove the existence in the sense of sequences of stationary solutions for some systems of reaction–diffusion type equations in the appropriate H2 spaces. It is established that, under reasonable technical conditions, the convergence in L1 of the integral kernels yields the existence and the convergence in H2 of the solutions. The nonlocal elliptic problems contain the second-order differential operators with and without Fredholm property. © 2018, Springer Nature Switzerland AG.

Авторы
Vougalter V.1 , Volpert V. 2, 3
Редакторы
-
Издательство
Birkhauser Verlag AG
Номер выпуска
5
Язык
Английский
Страницы
-
Статус
Опубликовано
Подразделение
-
Номер
205
Том
15
Год
2018
Организации
  • 1 Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada
  • 2 Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
  • 3 Peoples’ Friendship University of Russia, Ulitsa Miklukho-Maklaya, 6, Moscow, 117198, Russian Federation
Ключевые слова
non-Fredholm operators; Solvability conditions; stationary solutions; systems of integro-differential equations
Дата создания
04.02.2019
Дата изменения
04.02.2019
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/36308/