Two-sided hardy-type inequalities for monotone functions

We consider Hardy-type operators on the cones of monotone functions with general positive σ-finite Borel measure. Some two-sided Hardy-type inequalities are proved for the parameter -∞ < p < ∞. It is pointed out that such equivalences, in particular, imply a new characterization of the discrete Hardy inequality for the (most difficult) case 0 < q < p ≤ 1. © 2010 Taylor & Francis.

Авторы
Persson L.-E.1 , Popova O.V. 2 , Stepanov V.D. 2
Редакторы
-
Издательство
-
Номер выпуска
8
Язык
Английский
Страницы
973-989
Статус
Опубликовано
Подразделение
-
Номер
-
Том
55
Год
2010
Организации
  • 1 Department of Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
  • 2 Department of Mathematical Analysis and Function Theory, Peoples Friendship University, 117198 Moscow, Russian Federation
Ключевые слова
Hardy operator; Integral inequalities; Measures; Monotone functions; Weights
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2750/