The reactivity and desorption of butanol-2 adsorbed on Li 3Fe2(PO4)3 not subjected and subjected to treatment in a glow discharge hydrogen plasma were studied under flow conditions with a gas chromatographic analysis of products. X-ray photoelectron spectroscopy data showed that the number of phosphate groups on the surface of the phosphate was two times larger than the stoichiometric number and increased after plasma chemical treatment. The strength of butanol-phosphate bonds also increased, and the selectivity of alcohol decomposition with the formation of an olefin (dehydration) and ketone (dehydrogenation) changed. After plasma treatment, dehydrogenation centers were deactivated. The selectivities of alcohol transformations in the adsorbed state and under vapor phase conditions were different. Ketone was formed from adsorbed alcohol because the activation energies of dehydrogenation were equal for the two reaction variants. © 2010 Pleiades Publishing, Ltd.