Rational homotopy type, rational proper homotopy type and rational proper homotopy type at infinity

Sullivan approach to Rational homotopy theory of connected nilpotent simplicial sets of finite ℚ-rank is extended to connected locally nilpotent simplicial sets of arbitrary ℚ-rank. Rational proper homotopy type and rational proper homotopy type at infinity of connected, one-ended, proper nilpotent and nilpotent at infinity, locally finite simplicial sets are also defined. In particular, the notion of minimal algebras and minimal models in these setting are introduced in such a way that the indecomposable elements for such a minimal model are identified in each case, with the dual, as ℚ-vector space, of the corresponding version of the homotopy groups of the given simplicial set. © 2010 Topology Proceedings.

Авторы
Редакторы
-
Сборник материалов конференции
Издательство
-
Номер выпуска
-
Язык
Английский
Страницы
409-458
Статус
Опубликовано
Подразделение
-
Ссылка
-
DOI
-
Номер
-
Том
37
Год
2011
Организации
  • 1 Mathematical Analysis and Function Theory Department, Russian University of Peoples' Friendship, Miklukho-Maklay str. 6, 117198 Moscow, Russian Federation
Ключевые слова
ℚ-completion; Commutative algebras; Local ℚ-rank; Local nilpotence; Minimal model; Nilpotence at infinity; Proper nilpotence; Rational homotopy type; Rational proper homotopy type; Rational proper homotopy type at infinity; Strong nilpotence
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2532/