Elliptic theory for operators associated with diffeomorphisms of smooth manifolds

In this paper we give a survey of elliptic theory for operators associated with diffeomorphisms of smooth manifolds. Such operators appear naturally in analysis, geometry and mathematical physics. We survey classical results as well as results obtained recently. The paper consists of an introduction and three sections. In the introduction we give a general overview of the area of research. For the reader's convenience here we tried to keep special terminology to a minimum. In the remaining sections we give detailed formulations of the most important results mentioned in the introduction. © Springer Basel 2013. All rights reserved.

Авторы
Savin A. 1, 2 , Sternin B. 1, 2
Редакторы
-
Издательство
Springer Basel
Номер выпуска
-
Язык
Английский
Страницы
1-26
Статус
Опубликовано
Подразделение
-
Ссылка
-
Номер
-
Том
-
Год
2013
Организации
  • 1 Peoples' Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, RU-117198, Russian Federation
  • 2 Leibniz University of Hannover, Institut fur Analysis, Welfengarten 1, Hannover, D-30167, Germany
Ключевые слова
Cyclic cohomology; Diffeo-morphism; Elliptic operator; G-operator; Index; Index formula
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/2150/