Algebraic roots of Newtonian mechanics: Correlated dynamics of particles on a unique worldline

In the development of the old ideas of Stueckelberg-Wheeler-Feynman on the 'one-electron Universe', we study the purely algebraic dynamics of the ensemble of (two kinds of) identical point-like particles. These are represented by the (real and complex conjugate) roots of a generic polynomial system of equations that implicitly defines a single 'worldline'. The dynamics includes events of 'merging' of a pair of particles modelling the annihilation/creation processes. Correlations in the location and motion of the particles-roots relate, in particular, to the Vieta formulas. After a special choice of the inertial-like reference frame, the linear Vieta formulas guarantee that, for any worldline, the law of (non-relativistic) momentum conservation is identically satisfied. Thus, the general structure of Newtonian mechanics follows from the algebraic properties of a worldline alone. A simple example of, unexpectedly rich, 'polynomial dynamics' is retraced in detail and illustrated via an animation (available from stacks.iop.org/JPhysA/46/175206/mmedia). © 2013 IOP Publishing Ltd.

Авторы
Номер выпуска
17
Язык
Английский
Статус
Опубликовано
Номер
175206
Том
46
Год
2013
Организации
  • 1 Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow, Russian Federation
Цитировать
Поделиться

Другие записи

Voskressensky L.G., Akbulatov S.V., Borisova T.N., Kulikova L.N., Listratova A.V., Sorokina E.A., Varlamov A.V.
Химия гетероциклических соединений. Латвийский институт органического синтеза Латвийской академии наук / Springer New York Consultants Bureau. Том 49. 2013. С. 331-340