Composite fluxbranes with general intersections

Generalized composite fluxbrane solutions for a wide class of intersection rules are obtained. The solutions are defined on a manifold which contains a product of n Ricci-flat spaces M1 × ⋯ × M n with one-dimensional M1. They are defined up to a set of functions Hs obeying nonlinear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. A conjecture on polynomial structure of governing functions Hs for intersections related to semisimple Lie algebras is suggested. This conjecture is valid for Lie algebras: Am, Cm+1, m ≥ 1. For simple Lie algebras the powers of polynomials coincide with the components of the dual Weyl vector in the basis of simple roots. Explicit formulae for A1 ⊕ ⋯ ⊕ A1 (orthogonal), 'block-orthogonal' and A 2 solutions are obtained. Certain examples of solutions in D = 11 and D = 10 (II A) supergravities (e.g. with A2 intersection rules) and Kaluza-Klein dyonic A2 flux tube, are considered.

Авторы
Редакторы
-
Издательство
-
Номер выпуска
11
Язык
Английский
Страницы
3033-3047
Статус
Опубликовано
Подразделение
-
Номер
-
Том
19
Год
2002
Организации
  • 1 Ctr. Gravitation/Fundamental Metrol., VNILMS, 3/1 M Ulyanovoy Str, Moscow 117313, Russian Federation
  • 2 Inst. of Gravitation and Cosmology, Peoples' Friendship Univ. of Russia, 6 Miklukho-Maklaya Str, Moscow 117198, Russian Federation
Ключевые слова
-
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/193/