The distribution function for a subsystem experiencing temperature fluctuations

A nonlinear generalization of the Landau-Lifshitz theory of hydrodynamic fluctuations for the simplest case in which only energy flux and temperature fluctuations are observed is used to derive the distribution function for a subsystem with a fluctuating temperature, which coincides with the Levy distribution taken to be one of the main results of the so-called Tsallis's nonextensive statistics. It is demonstrated that the same distribution function is obtained from the principle of maximum of information entropy if the latter is provided by Renyi's entropy, which is an extensive quantity. The obtained distribution function is to be used instead of the Gibbs distribution in constructing the thermodynamics of systems with significant temperature fluctuations. © 2002 MAIK "Nauka/Interperiodica".

Авторы
Bashkirov A.G.1 , Sukhanov A.D. 2
Редакторы
-
Издательство
-
Номер выпуска
3
Язык
Английский
Страницы
440-446
Статус
Опубликовано
Подразделение
-
Номер
-
Том
95
Год
2002
Организации
  • 1 Institute of Dynamics of Geospheres, Russian Academy of Sciences, Moscow, 117334, Russian Federation
  • 2 Russian University of Peoples' Friendship, Moscow, 117198, Russian Federation
Ключевые слова
Entropy; Functions; Hydrodynamics; Statistics; Thermodynamics; Fluctuating temperature; Hydrodynamic fluctuations; Thermodynamics of systems; Thermal effects
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/173/