QL-AODV: Q-Learning-Enhanced Multi-Path Routing Protocol for 6G-Enabled Autonomous Aerial Vehicle Networks

With the arrival of sixth-generation (6G) wireless systems comes radical potential for the deployment of autonomous aerial vehicle (AAV) swarms in mission-critical applications, ranging from disaster rescue to intelligent transportation. However, 6G-supporting AAV environments present challenges such as dynamic three-dimensional topologies, highly restrictive energy constraints, and extremely low latency demands, which substantially degrade the efficiency of conventional routing protocols. To this end, this work presents a Q-learning-enhanced ad hoc on-demand distance vector (QL-AODV). This intelligent routing protocol uses reinforcement learning within the AODV protocol to support adaptive, data-driven route selection in highly dynamic aerial networks. QL-AODV offers four novelties, including a multipath route set collection methodology that retains up to ten candidate routes for each destination using an extended route reply (RREP) waiting mechanism, a more detailed RREP message format with cumulative node buffer usage, enabling informed decision-making, a normalized 3D state space model recording hop count, average buffer occupancy, and peak buffer saturation, optimized to adhere to aerial network dynamics, and a light-weighted distributed Q-learning approach at the source node that uses an ε-greedy policy to balance exploration and exploitation. Large-scale simulations conducted with NS-3.34 for various node densities and mobility conditions confirm the better performance of QL-AODV compared to conventional AODV. In high-mobility environments, QL-AODV offers up to 9.8% improvement in packet delivery ratio and up to 12.1% increase in throughput, while remaining persistently scalable for various network sizes. The results prove that QL-AODV is a reliable, scalable, and intelligent routing method for next-generation AAV networks that will operate in intensive environments that are expected for 6G.

Авторы
Kozyrev D.V. 1 , Ateya Abdelhamied A.2, 3 , Nguyen Duc Tu4 , Muthanna Ammar4 , Koucheryavy Andrey 1, 4 , Sztrik János5
Журнал
Издательство
MDPI AG
Номер выпуска
17
Язык
Английский
Статус
Опубликовано
Номер
10
Год
2025
Организации
  • 1 Российский университет дружбы народов им. Патриса Лумумбы
  • 2 EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
  • 3 Department of Electronics and Communications Engineering, Zagazig University, Zagazig 44519, Egypt
  • 4 Department of Telecommunication Networks and Data Transmission, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, 193232 Saint Petersburg, Russia
  • 5 Department of Informatics Systems and Networks, Faculty of Informatics, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
Ключевые слова
6G; Q-learning; autonomous aerial vehicle; swarm drones; ad hoc on-demand distance vector; routing
Цитировать
Поделиться

Другие записи

Kuliyeva Asya, Serejnikova Natalia, Eshmotova Gulnara, Teslya Yulya, Ivina Anastasia, Zarov Alexey, Panin Michael, Prizov Alexey, Lyalina Vera, Shestakov Dmitry, Fayzullin Alexey, Timashev Peter, Volkov Alexey
Pathophysiology. Multidisciplinary Digital Publishing Institute (MDPI). Том 32. 2025. 36 с.
Новиков А.С., Опанасюк С.С., Соколов М.Н., Сухих Т.С., Салий И.В., Адонин С.А., Гоцко М.Д.
Журнал структурной химии. Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук. Том 66. 2025. 157021 с.