Parabola As an Activation Function of Artificial Neural Networks

Abstract: The use of the parabola and its branches as a nonlinearity expanding the logical capabilities of artificial neurons is considered. In particular, the applicability of parabola branches to the construction of an s-shaped function is suitable for tuning a neural network through reverse error propagation is determined. Solutions to typical problem of function XOR construction are shown using a rotated parabola. The main focus of modern research is to reduce computational complexity or, on the contrary, accelerate calculations by parallelizing a nonlinear function, i.e. by hardware redundancy. © Allerton Press, Inc. 2024.

Авторы
Khachumov M.V. , Emelyanova Y.G.
Номер выпуска
5
Язык
Английский
Страницы
471-477
Статус
Опубликовано
Том
51
Год
2024
Организации
  • 1 Ailamazyan Program Systems Institute, Russian Academy of Sciences, Yaroslavl region, Veskovo, Russian Federation
  • 2 Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, Russian Federation
  • 3 Peoples’ Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
neural network; neuron; parabola; s-shaped activation function; sigmoid; tuning rate; XOR problem
Цитировать
Поделиться

Другие записи

Andreev V.V., Arshinov M.Y., Belan B.D., Belan S.B., Gordyushkin V.A., Davydov D.K., Demin V.I., Dudorova N.V., Elansky N.F., Ivanov R.V., Ivlev G.A., Kozlov A.V., Konovaltseva L.V., Korenskiy M.Y., Kotel’nikov S.N., Kuznetsova I.N., Lapchenko V.A., Lezina E.A., Marchenko O.O., Obolkin V.A., Postylyakov O.V., Potemkin V.L., Savkin D.E., Semutnikova E.G., Senik I.A., Stepanov E.V., Tolmachev G.N., Fofonov A.V., Khodzher T.V., Chelibanov I.V., Chelibanov V.P., Shirotov V.V., Shtabkin Y.A., Shukurov K.A.
Atmospheric and Oceanic Optics. Pleiades journals. Том 37. 2024. С. 849-864