NONNEGATIVE TENSOR DECOMPOSITION VIA COLLABORATIVE NEURODYNAMIC OPTIMIZATION

This paper introduces a novel collaborative neurodynamic model for computing nonnegative canonical polyadic decomposition (CPD). The model relies on a system of recurrent neural networks to solve the underlying nonconvex optimization problem associated with nonnegative CPD. Additionally, a discrete-time version of the continuous neural network is developed. To enhance the chances of reaching a potential global minimum, the recurrent neural networks are allowed to communicate and exchange information through particle swarm optimization (PSO). Convergence and stability analyses of both the continuous and discrete neurodynamic models are thoroughly examined. Experimental evaluations are conducted on random and real-world datasets to demonstrate the effectiveness of the proposed approach. © 2025 Society for Industrial and Applied Mathematics.

Авторы
Ahmadi-Asl S. , Leplat V. , Phan A.H. , Cichocki A.
Издательство
Society for Industrial and Applied Mathematics Publications
Номер выпуска
1
Язык
Английский
Страницы
C100-C125
Статус
Опубликовано
Том
47
Год
2025
Организации
  • 1 Lab of Machine Learning and Knowledge Representation, Innopolis University, Innopolis, Russian Federation
  • 2 Peoples' Friendship University of Russia, Moscow, Russian Federation
  • 3 Innopolis University, Innopolis, Russian Federation
  • 4 Skolkovo Institute of Science and Technology, Center for Artificial Intelligence Technology, Moscow, Russian Federation
  • 5 Systems Research Institute of Polish Academy of Science, Warsaw, Poland
Ключевые слова
canonical polyadic decomposition; neurodynamic; particle swarm optimization
Цитировать
Поделиться

Другие записи