Convolution Type Operators With Potential: Essential and Infinite Discrete Spectrum

The goal of this note is to study the spectrum of a self-adjoint convolution operator in (Formula presented.) with an integrable kernel that is perturbed by an essentially bounded real-valued potential tending to zero at infinity. We show that the essential spectrum of such operator is the union of the spectrum of the convolution operator and of the essential range of the potential. Then we provide several sufficient conditions for the existence of a countable sequence of discrete eigenvalues. For operators having nonconnected essential spectrum, we give sufficient conditions for the existence of discrete eigenvalues in the corresponding gaps of the essential spectrum. © 2025 John Wiley & Sons Ltd.

Авторы
Borisov D. , Piatnitski A. , Zhizhina E.
Издательство
John Wiley and Sons Ltd
Язык
Английский
Статус
Опубликовано
Год
2025
Организации
  • 1 Institute of Mathematics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
  • 2 S.M. Nikol'skii Mathematical Institute, People's Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 3 Faculty of Engineering Science and Technology, The Arctic University of Norway, Campus Narvik, Narvik, Norway
  • 4 Higher School of Modern Mathematics MIPT, Moscow, Russian Federation
Ключевые слова
convolution type operator; infinite discrete spectrum; integrable kernel; spectral problem
Цитировать
Поделиться

Другие записи

Kobylkin S.S., Kotelnikov A.E., Esina E.N., Mue S., Mamadou B.A.
Горный информационно-аналитический бюллетень (научно-технический журнал). Общество с ограниченной ответственностью "Горная книга". 2025. С. 43-56