Построение многомерных векторных полей, проекции которых на координатные плоскости имеют заданные топологические структуры

Цель работы - построение многомерных векторных полей, которые представляются автономными системами обыкновенных дифференциальных уравнений и имеют заданные топологические структуры в заданных ограниченных односвязных областях фазового пространства при условии, что эти структуры могут быть заданы топологическими структурами проекций искомых векторных полей на координатные плоскости. Эта задача является обратной задачей качественной теории обыкновенных дифференциальных уравнений. Результаты работы могут быть использованы для построения математических моделей динамических систем в разных областях науки и техники. В частности, для механических систем с произвольным конечным числом степеней свободы такие векторные поля могут представлять собой кинематические уравнения программных движений и быть использованы для получения управляющих сил и моментов, реализующих эти движения.

The aim of the work is to construct multidimensional vector fields that are represented by autonomous systems of ordinary differential equations and have specified topological structures in specified limited simply connected domains of the phase space, provided that these structures can be specified by topological structures of projections of the sought vector fields onto coordinate planes. This problem is an inverse problem of the qualitative theory of ordinary differential equations. The results of this work can be used to construct mathematical models of dynamic systems in various fields of science and technology. In particular, for mechanical systems with an arbitrary finite number of degrees of freedom, such vector fields can represent kinematic equations of program motions and be used to obtain control forces and moments implementing these motions.

Авторы
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
3
Язык
Русский
Страницы
375-388
Статус
Опубликовано
Том
70
Год
2024
Организации
  • 1 Российский университет дружбы народов
Ключевые слова
vector field; Ode System; qualitative theory of ODE; phase portrait; topological structure; dynamic system; inverse problem; векторное поле; система ОДУ; качественная теория ОДУ; фазовый портрет; топологическая структура; динамическая система; обратная задача
Цитировать
Поделиться

Другие записи

Жуйков К.Н., Савин А.Ю.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 70. 2024. С. 403-416