ПОВЫШЕНИЕ ТОЧНОСТИ ЭКСПОНЕНЦИАЛЬНО СХОДЯЩИХСЯ КВАДРАТУР

Вычисление одномерных интегралов возникает во многих задачах физики и техники. Для этого чаще всего используются простейшие квадратуры средних, трапеций и Симпсона на равномерной сетке. Для интегралов от периодических функций по полному периоду сходимость этих квадратур резко ускоряется и зависит от числа шагов сетки по экспоненциальному закону. В данной работе получены новые асимптотически точные оценки погрешности таких квадратур. Они учитывают расположение и кратность полюсов подынтегральной функции в комплексной плоскости. Построено обобщение этих оценок на случай, когда априорная информация о полюсах подынтегральной функции отсутствует. Описана процедура экстраполяции погрешности, которая кардинально ускоряет сходимость квадратур. Библ. 19. Фиг. 3.

Издательство
Федеральное государственное бюджетное учреждение "Российская академия наук"
Номер выпуска
1
Язык
Русский
Страницы
7-16
Статус
Опубликовано
Том
64
Год
2024
Организации
  • 1 МГУ им. М. В. Ломоносова
  • 2 РУДН
Ключевые слова
экспоненциальные квадратуры; контроль точности; экстраполяция погрешности
Цитировать
Поделиться

Другие записи