We have synthesized a series of lead complexes with pyrazinyl-4-methylbenzoylhydrazone (HPyz) and different anions as ancillary ligands, namely [Pb(HPyz)Cl2] (1), [Pb(Pyz)(NO2)] (2), [Pb(Pyz)(NO3)(H2O)] (3), [Pb(Pyz)(NO2)0.5(NO3)0.5(H2O)] (4), and [Pb(Pyz)(SCN)(H2O)] (5). These complexes have been characterized by 1H NMR, IR, and X-ray diffraction techniques. All the complexes show a comparable coordination mode of the organic ligand while the supramolecular crystal structure is addressed by the anions and coordinated water molecules when present. In fact, the solid state is characterized by π-stacking interactions between pyrazine and phenyl rings. In particular, inspection of X-ray data reveals dimerization of centrosymmetric related species of these lead complexes via various noncovalent interactions. To assess the nature of these intermolecular interactions, the Hirshfeld surface analysis and DFT calculations, followed by topological analysis of the electron density distribution within the QTAIM approach and NCI analysis, have been carried out for the model structures based on the experimental X-ray diffraction analysis data. The Hirshfeld surface analysis for the X-ray structures reveals that in all cases crystal packing is determined primarily by intermolecular contacts involving hydrogen atoms. The QTAIM analysis of model structures demonstrates the presence of bond critical points for various intermolecular interactions responsible for the supramolecular dimerization of the studied lead complexes in solid state.