Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media

We study homogenization problem for non-autonomous parabolic equations of the form ∂tu=L(t)u with an integral convolution type operator L(t) that has a non-symmetric jump kernel which is periodic in spatial variables and stationary random in time. We show that asymptotically the spatial and temporal evolutions of the solutions are getting decoupled and can be described separately, and, under additional mixing conditions on the coefficient, the homogenized equation is a SPDE with a finite dimensional multiplicative noise. © 2025 The Author(s)

Авторы
Piatnitski A. , Zhizhina E.
Издательство
Elsevier Masson SAS
Язык
Английский
Статус
Опубликовано
Номер
103660
Том
194
Год
2025
Организации
  • 1 The Arctic University of Norway, campus Narvik, P.O. Box 385, Narvik, 8505, Norway
  • 2 Higher School of Modern Mathematics MIPT, 1 Klimentovskiy per., Moscow, 115184, Russian Federation
  • 3 People Friendship University of Russia, Miklukho-Maklaya str., 6, Moscow, 117198, Russian Federation
Ключевые слова
Averaging in moving coordinates; Convolution-type operators; Stochastic homogenization; Time dependent environment
Цитировать
Поделиться

Другие записи