We apply the Simpson-Visser phenomenological regularization method to a cylindrically symmetric solution of the Einstein-Maxwell equations known as an inverted black hole. In addition to analyzing some properties of thus regularized space-time, including the Carter-Penrose diagrams, we show that this solution can be obtained from the Einstein equations with a source combining a phantom scalar field with a nonzero self-interaction potential and a nonlinear magnetic field. A similar kind of source is obtained for the cylindrical black bounce solution proposed by Lima et al. as a regularized version of Lemos's black string solution. Such sources are shown to be possible for a certain class of cylindrically, planarly, and toroidally symmetric metrics that includes the regularized solutions under consideration. © 2023 American Physical Society.