Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study

More contemporary options have been presented in the last few years as surgical methods and materials have improved in patients with degenerative spine illnesses. The use of biologically integrated titanium cages of a unique design based on computer 3D modeling for the surgical treatment of patients with degenerative illnesses of the spine’s intervertebral discs has been proposed and experimentally tested. The goal of this study is to compare the radiographic and clinical outcomes of lumbar posterior interbody fusion with a 3D porous titanium alloy cage versus a titanium-coated polyetheretherketone (PEEK) cage, including fusion quality, time to fusion, preoperative and postoperative patient assessments, and the presence, severity, and other side effect characteristics. (1) Methods: According to the preceding technique, patients who were operated on with physiologically integrated titanium cages of a unique design based on 3D computer modeling were included in the study group. This post-surveillance study was conducted as a randomized, prospective, interventional, single-blind, center study to look at the difference in infusion rates and the difference compared to PEEK cages. The patients were evaluated using CT scans, Oswestry questionnaires (every 3, 6, and 12 months), and VAS scales. (2) Results: Six months following surgery, the symptoms of fusion and the degree of cage deflation in the group utilizing the porous titanium 3D cage were considerably lower than in the group using the PEEK cage (spinal fusion sign, p = 0.044; cage subsidence, p = 0.043). The control group had one case of cage migration into the spinal canal with screw instability, one case of screw instability without migration but with pseudoarthrosis formation and two surrounding segment syndromes with surgical revisions compared with the 3D porous titanium alloy cage group. (3) Conclusions: The technique for treating patients with degenerative disorders or lumbar spine instability with aspects of neural compression utilizing biologically integrated titanium cages of a unique design based on computer 3D printing from CT scans has been proven. This allows a new approach of spinal fusion to be used in practice, restoring the local sagittal equilibrium of the spinal motion segment and lowering the risk of pseudarthrosis and revision surgery. © 2022 by the authors.

Авторы
Nurmukhametov R. , Dosanov M. , Encarnacion M.D.J. , Barrientos R. , Matos Y. , Alyokhin A.I. , Baez I.P. , Efe I.E. , Restrepo M. , Chavda V. , Chaurasia B. , Montemurro N.
Издательство
Multidisciplinary Digital Publishing Institute (MDPI)
Номер выпуска
3
Язык
Английский
Страницы
175-184
Статус
Опубликовано
Том
3
Год
2022
Организации
  • 1 Central Clinical Hospital of the Russian Academy of Sciences, Moscow, 121359, Russian Federation
  • 2 Department of Neurosurgery, University of Friendship of Peoples, Moscow, 117198, Russian Federation
  • 3 Hospital Dr. Alejandro Cabral, San Juan de la Maguana, 72000, Dominican Republic
  • 4 Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, 10117, Germany
  • 5 Ibero-American University, México City, 01030, Mexico
  • 6 Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, San Francisco, 94305, CA, United States
  • 7 Bhawani Hospital and Research Centre, Birgunj, 44300, Nepal
  • 8 Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, Pisa, 56100, Italy
Ключевые слова
3D modeling; biologically integrable titanium cages; custom design cages; degenerative diseases; spine; titanium cages; transforaminal lumbar interbody fusion (TLIF)
Цитировать
Поделиться

Другие записи

Gorbatova E.A., Kozlova M.V., Zubarev A.V., Zaderenko I.A., Polyakov A.P.
Голова и шея. Российское издание. Журнал Общероссийской общественной организации "Федерация специалистов по лечению заболеваний головы и шеи". Том 10. 2022. С. 44-52
Nuralieva N.F., Yukina M.Yu., Troshina E.A., Zhukova O.V., Petrov V.A., Volnukhin V.A.
BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY. PIROGOV RUSSIAN NATL RESEARCH MEDICAL UNIV. Том 5. 2022. С. 65-70