Soil quality and r – K fungal communities in plantations after conversion from subtropical forest

Intensive clear-cutting of natural forests and conversion to monoculture plantations are ongoing worldwide, leading to the degradation of soil quality and microbial functions. Here, we compared soil quality index (SQI) and fungal communities in a natural forest (Forest) and four 5-year-old monoculture plantations, including Camellia oleifera (Oil), Amygdalus persica (Peach), Myrica rubra (Berry) and Cunninghamia lanceolate (Fir) in a subtropical region of China. After conversion, soil pH in the plantations rose up to 0.31, but organic carbon and total nitrogen contents, sucrase, acid protease, glutaminase, acid and alkaline phosphatase activities decreased by 83%, 59%, 40%, 64%, 66%, 94% and 59%, respectively. Correspondingly, the SQI dropped by 65%. High-throughput sequencing of the ITS1 region demonstrated an increase in α-diversity and a striking difference in β-diversity of fungi following conversion. Changes in the dominant fungal taxa following forest conversion to plantations were interpreted by r- and K-selection of life strategies. Conversion increased the fungal groups with r-strategies, such as Ascomycota and Zygomycota, but decreased the fungal groups with K-strategies, such as Basidiomycota. Genera affiliated to those phyla including Pseudophialophora, Rhytisma increased, but Russula decreased. Redundancy analysis and structural equation modeling indicated that the diversity and composition of fungal communities changed with soil degradation, which was mainly driven by increased pH and total phosphorus content, but decreased C/N ratio and C and N related enzymes activities. Overall, the conversion of forest to monoculture plantations decreased soil quality and the abundance of K-strategists, retarded the decomposition of persistent organic matter, but boosted the prevalence of r-strategists in a more diverse fungal community. © 2022 Elsevier B.V.

Авторы
Liu T. , Wu X. , Li H. , Ning C. , Li Y. , Zhang X. , He J. , Filimonenko E. , Chen S. , Chen X. , Gibson D.J. , Kuzyakov Y. , Yan W.
Журнал
Издательство
Elsevier B.V.
Язык
Английский
Статус
Опубликовано
Номер
106584
Том
219
Год
2022
Организации
  • 1 National Engineering Laboratory of Applied Technology for Forestry & Ecology in Southern China, Central South University of Forestry and Technology, Hunan, Changsha, 410004, China
  • 2 Lutou National Station for Scientific Observation and Research of Forest Ecosystems, Hunan, Yueyang, 414000, China
  • 3 Tyumen State University, X-Bio Institute of Environmental and Agricultural Biology, Tyumen, 625003, Russian Federation
  • 4 School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Carbondale, 62901, IL, United States
  • 5 College of Arts and Sciences, Governors State University, University Park, 60484, IL, United States
  • 6 School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, 62901, IL, United States
  • 7 Agro-Technological Institute, Peoples Friendship University of Russia, Moscow, 117198, Russian Federation
  • 8 Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen, 37077, Germany
Ключевые слова
Enzyme activities; Forest conversion; Fungal community and functions; Microbial life strategies; Nutrient cycling; Soil quality index
Цитировать
Поделиться

Другие записи