STOCHASTIC PATH LOSS MODEL IN 5G NETWORK DEPLOYMENT SCENARIOS: A STUDY BASED ON 3GPP TR 38.901; [ВЕРОЯТНОСТНАЯ МОДЕЛЬ ЗАТУХАНИЯ МОЩНОСТИ СИГНАЛА В СЦЕНАРИЯХ 3GPP TR 38.901 РАЗВЕРТЫВАНИЯ СЕТИ 5G]

The fifth-generation (5G) and beyond networks will utilize radio frequencies in the terahertz spectrum, enabling extremely high data transmission rates. However, signal loss may occur when signals pass through obstacles, making it crucial to simulate signal propagation using stochastic geometry and apply up-to-date models for signal attenuation. The 3GPP TR 38.901 specification includes models that describe signal attenuation in various 5G network scenarios using empirical formulas. Nevertheless, simpler formulas are typically employed to create models based on stochastic geometry. The authors present the cumulative distribution function for path loss at random user locations according to the scenarios described in 3GPP TR 38.901. In numerical examples, it is shown that the difference in values with the simplified formula can be significant and lead to underestimation of the network’s capacity © 2024 Federal Research Center "Computer Science and Control" of Russian Academy of Sciences. All rights reserved.

Авторы
Elena M.D. , Irina K.A. , Sergey S.Ya.
Издательство
Федеральный исследовательский центр "Информатика и управление" РАН
Номер выпуска
2
Язык
Русский
Страницы
25-31
Статус
Опубликовано
Том
18
Год
2024
Организации
  • 1 RUDN University, 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation
  • 2 V. A. Trapeznikov Institute of Control Science, The Russian Academy of Sciences, 65 Profsoyuznaya Str., Moscow, 117997, Russian Federation
  • 3 Federal Research Center “Computer Science and Control”, The Russian Academy of Sciences, 44-2 Vavilov Str., Moscow, 119333, Russian Federation
Ключевые слова
3GPP TR 38.901; 5G; line-of-sight (LOS); non-line-of-sight (NLOS); path loss; stochastic geometry; wireless network
Цитировать
Поделиться

Другие записи

Reshmin S.A., Bektybaeva M.T.
ТРУДЫ ИНСТИТУТА МАТЕМАТИКИ И МЕХАНИКИ УРО РАН. KRASOVSKII INST MATHEMATICS & MECHANICS URAL BRANCH RUSSIAN ACAD SCIENCES. Том 30. 2024. С. 152-163
Ostrikova D.Yu., Golos E.S., Beschastnyi V.A., Machnev E.A., Shorgin V.S., Gaidamaka Y.V.
Информатика и ее применения. Федеральный исследовательский центр "Информатика и управление" РАН. Том 18. 2024. С. 32-39