Statistical causality analysis

The problem of identifying deterministic cause-and-effect relationships, initially hidden in accumulated empirical data, is discussed. Statistical methods were used to identify such relationships. A simple mathematical model of cause-and-effect relationships is proposed, in the framework of which several models of causal dependencies in data are described – for the simplest relationship between cause and effect, for many effects of one cause, as well as for chains of cause-and-effect relationships (so-called transitive causes). Estimates are formulated that allow using the de Moivre–Laplace theorem to determine the parameters of causal dependencies linking events in a polynomial scheme trials. The statements about the unambiguous identification of cause-and-effect dependencies that are reconstructed from accumulated data are proved. The possibilities of using such data analysis schemes in medical diagnostics and cybersecurity tasks are discussed. © Grusho A. A., Grusho N. A., Zabezhailo M. I., Samouylov K. E., Timonina E. E., 2024.

Авторы
Grusho A.A. , Grusho N.A. , Zabezhailo M.I. , Samouylov K.E. , Timonina E.E.
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
2
Язык
Английский
Страницы
213-221
Статус
Опубликовано
Том
32
Год
2024
Организации
  • 1 Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian Academy of Sciences, 44 Vavilova St, bldg. 2, Moscow, 119133, Russian Federation
  • 2 Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
cause-and-effect relationships; finite classification task; machine learning
Цитировать
Поделиться

Другие записи