WEAK SOLVABILITY OF NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENTS

We are concerned with the study of the existence and multiplicity of solutions for Dirichlet boundary value problems, involving the (p(m), q(m))− equation and the nonlinearity is superlinear but does not fulfil the Ambrossetti-Rabinowitz condition in the framework of Sobolev spaces with variable exponents in a complete manifold. The main results are proved using the mountain pass theorem and Fountain theorem with Cerami sequences. Moreover, an example of a (p(m), q(m)) equation that highlights the applicability of our theoretical results is also provided. © 2023 American Institute of Mathematical Sciences. All rights reserved.

Авторы
Aberqi A. , Bennouna J. , Benslimane O. , Ragusa M.A.
Издательство
American Institute of Mathematical Sciences
Номер выпуска
6
Язык
Английский
Страницы
1142-1157
Статус
Опубликовано
Том
16
Год
2023
Организации
  • 1 Laboratory LAMA, Sidi Mohamed Ben Abdellah University, National School of Applied Sciences, Fez, Morocco
  • 2 Laboratory LAMA, Department of Mathematics, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, B.P 1796, Atlas Fez, Morocco
  • 3 Dipartimento di Matematica e Informatica, Universitá di Catania Catania, Italy
  • 4 RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Цитировать
Поделиться

Другие записи