Formal Expansions in Stochastic Model for Wave Turbulence 2: Method of Diagram Decomposition

In this paper we continue to study small amplitude solutions of the damped cubic NLS equation, driven by a random force [the study was initiated in our previous work Dymov and Kuksin (Commun Math Phys 382:951–1014, 2021) and continued in Dymov et al. (The large-period limit for equations of discrete turbulence 2021, arXiv:2104.11967)]. We write solutions of the equation as formal series in the amplitude and discuss the behaviour of this series under the wave turbulence limit, when the amplitude goes to zero, while the space-period goes to infinity. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Авторы
Dymov A. , Kuksin S.
Издательство
Springer New York LLC
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
3
Том
190
Год
2023
Организации
  • 1 Steklov Mathematical Institute of RAS, Moscow, 119991, Russian Federation
  • 2 National Research University Higher School of Economics, Moscow, 119048, Russian Federation
  • 3 Skolkovo Institute of Science and Technology, Skolkovo, 143005, Russian Federation
  • 4 Institut de Mathémathiques de Jussieu–Paris Rive Gauche, CNRS, Université Paris Diderot, UMR 7586, Sorbonne Paris Cité, Paris, 75013, France
  • 5 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Diagram decomposition; Fast oscillating integrals; Feynman diagrams; Nonlinear Schrödinger equation; Wave kinetic equation; Wave kinetic limit; Wave turbulence; Weak turbulence
Цитировать
Поделиться

Другие записи