EXISTENCE OF PULSES FOR MONOTONE REACTION-DIFFUSION SYSTEMS

Existence of pulse solutions, that is, positive stationary solutions with zero limit at infinity is studied for monotone reaction-diffusion systems in the bistable case. It is shown that such solutions exist if and only if the speed of the travelling wave described by the same system is positive. The proof is based on the Leray-Schauder method using topological degree for elliptic problems in unbounded domains and a priori estimates of solutions in some appropriate weighted spaces. © 2023 Society for Industrial and Applied Mathematics.

Авторы
Marion M. , Volpert V.
Номер выпуска
2
Язык
Английский
Страницы
603-627
Статус
Опубликовано
Том
55
Год
2023
Организации
  • 1 Institut Camille Jordan, UMR 5585 CNRS, Ecole Centrale de Lyon, Ecully, 69134, France
  • 2 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
  • 3 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
existence of pulses; Leray-Schauder method; monotone system; reaction-diffusion system
Цитировать
Поделиться

Другие записи