Mammalian spermatozoa are highly energized cells in which most of the proteins and activated signaling cascades are involved in the metabolic pathways. Flavin adenine dinucleotide (FAD) has one of the most important roles in the correct functional activity of spermatozoa since it acts as a cofactor for flavoenzymes, critical for proper metabolism and predominantly located in mitochondria. Non-invasive, vital and non-traumatic examination of sperm FAD level and microenvironment could be performed by fluorescence lifetime imaging microscopy (FLIM). In this study, we assessed the metabolic status of spermatozoa from healthy donors and found that FLIM could be used to segregate and separate the male germ cells according to the type of metabolic activity which corresponds with spermatozoa motility measured in standard spermogram tests. © 2023 Elsevier Inc.