Thermostated Susceptible-Infected-Susceptible epidemic model

The evolution of epidemics based on the Susceptible-Infected-Susceptible (SIS) model relies on the density of infected individuals ρ. Recent results show that the mean density 〈ρ〉 and its variance σ2 can be regarded as canonical variables and obey Hamilton's equations. Using the Hamiltonian formulation, we study the SIS system coupled to a Nosé thermal bath. We reinterpret classical parameters like temperature in an epidemiological context. In contrast to classical epidemiological models, the thermal bath modifies the dynamical behavior of the system by introducing fluctuations, such as those seen in some infectious waves. We study the stability and show that 〈ρ〉 tends to be half of the value predicted by the original SIS model. © 2022 Elsevier Inc.

Авторы
Alrebdi H.I. , Steklain A. , Amorim E.P.M. , Zotos E.
Издательство
Elsevier Inc.
Язык
Английский
Статус
Опубликовано
Номер
127701
Том
441
Год
2023
Организации
  • 1 Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
  • 2 Mathematics Department, Universidade Tecnológica Federal do Paraná, 3165 Av. Silva Jardim, Curitiba, Brazil
  • 3 Departamento de Física, Universidade do Estado de Santa Catarina, SC, Joinville, 89219-710, Brazil
  • 4 Department of Physics, School of Science, Aristotle University of Thessaloniki, Thessaloniki, 541 24, Greece
  • 5 S.M. Nikolskii Mathematical Institute of the Peoples’ Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation
Ключевые слова
Epidemic; Hamiltonian epidemic model; SIS epidemic model
Цитировать
Поделиться

Другие записи