Local Solvability and Stability of an Inverse Spectral Problem for Higher-Order Differential Operators

In this paper, we, for the first time, prove the local solvability and stability of an inverse spectral problem for higher-order ((Formula presented.)) differential operators with distribution coefficients. The inverse problem consists of the recovery of differential equation coefficients from (Formula presented.) spectra and the corresponding weight numbers. The proof method is constructive. It is based on the reduction of the nonlinear inverse problem to a linear equation in the Banach space of bounded infinite sequences. We prove that, under a small perturbation of the spectral data, the main equation remains uniquely solvable. Furthermore, we estimate the differences of the coefficients in the corresponding functional spaces. © 2023 by the author.

Авторы
Журнал
Издательство
MDPI AG
Номер выпуска
18
Язык
Английский
Статус
Опубликовано
Номер
3818
Том
11
Год
2023
Организации
  • 1 Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov, 410012, Russian Federation
  • 2 Department of Applied Mathematics and Physics, Samara National Research University, Moskovskoye Shosse 34, Samara, 443086, Russian Federation
  • 3 S.M. Nikolskii Mathematical Institute, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
Ключевые слова
distribution coefficients; higher-order differential operators; inverse spectral problem; local solvability; stability
Цитировать
Поделиться

Другие записи

Popov V.V., Markova E.B., Zubavichus Y.V., Menushenkov A.P., Yastrebtsev A.A., Gaynanov B.R., Chernysheva O.V., Ivanov A.A., Rudakov S.G., Berdnikova M.M., Pisarev A.A., Kulikova E.S., Kolyshkin N.A., Khramov E.V., Khrustalev V.N., Shchetinin I.V., Tsarenko N.A., Ognevskaya N.V., Seregina O.N.
Crystals. MDPI AG. Том 13. 2023.