On existence, stability and many-particle approximation of solutions of 1D Hughes' model with linear costs

This paper deals with the one-dimensional formulation of Hughes' model for pedestrian flows in the setting of entropy solutions. In this model, the mass conservation equation for the pedestrian density authorizes non-classical shocks at the location of the so-called turning curve. We consider linear (more precisely, affine) cost functions, whose slopes α⩾0 correspond to different crowd behaviours. We prove for the first time an existence result in the framework of entropy solutions, for general data. Differently from the partial existence results available in the literature, our existence result allows for the possible presence of non-classical shocks. The proofs are based on a sharply formulated many-particle approximation scheme, with careful treatment of interactions of particles with the turning curve. First, we rigorously establish the well-posedness of this many-particle scheme. Then we develop a local compactness argument that permits to circumvent the lack of available BV bounds in a vicinity of the turning curve, while proving consistency of the approximation scheme with the entropy formulation. Finally, we illustrate numerically that the model is able to reproduce typical behaviours in case of evacuation. Special attention is devoted to the impact of the parameter α on the evacuation time. © 2023 Elsevier Inc.

Авторы
Andreianov B. , Rosini M.D. , Stivaletta G.
Издательство
Academic Press Inc.
Язык
Английский
Страницы
253-298
Статус
Опубликовано
Том
369
Год
2023
Организации
  • 1 Institut Denis Poisson (CNRS UMR7013), Université de Tours, Université d'Orléans, Parc Grandmont, Tours, 37200, France
  • 2 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
  • 3 Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie-Skłodowskiej 1, Lublin, 20-031, Poland
  • 4 Department of Mathematics and Computer Science, University of Ferrara, via Machiavelli 30, Ferrara, 44121, Italy
  • 5 Department of Management and Business Administration, University “G. d'Annunzio” of Chieti-Pescara, viale Pindaro, 42, Pescara, 65127, Italy
  • 6 Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, via Vetoio 1, Coppito, 67100, Italy
Ключевые слова
Existence; Hughes' model; Many-particle approximation; Moving interface; Pedestrian flow; “Hydrodynamic” limit
Цитировать
Поделиться

Другие записи

Romanova O.L., Blagonravov M.L., Torshin V.I., Dzhuvalyakov P.G., Ershov A.V., Kislov M.A., Magulaev A.M.
Бюллетень экспериментальной биологии и медицины Клеточные технологии в биологии и медицине. New York Consultants BureauSpringer / Автономная некоммерческая организация Издательство Российской академии медицинских наук. Том 175. 2023. С. 777-780