Monitoring the spread of Sosnowskyi’s hogweed using a random forest machine learning algorithm in Google Earth Engine; [Мониторинг распространения борщевика Сосновского с использованием алгоритма машинного обучения «случайный лес» в Google Earth Engine]

Examining the spectral response of plants from data collected using remote sensing has a lot of potential for solving real-world problems in different fields of research. In this study, we have used the spectral property to identify the invasive plant Heracleum sosnowskyi Manden from satellite imagery. H. sosnowskyi is an invasive plant that causes many harms to humans, animals and the ecosystem at large. We have used data collected from the years 2018 to 2020 containing sample geolocation data from the Moscow Region where this plant exists and we have used Sentinel-2 imagery for the spectral analysis towards the aim of detecting it from the satellite imagery. We deployed a Random Forest (RF) machine learning model within the framework of Google Earth Engine (GEE). The algorithm learns from the collected data, which is made up of 12 bands of Sentinel-2, and also includes the digital elevation together with some spectral indices, which are used as features in the algorithm. The approach used is to learn the biophysical parameters of H. sosnowskyi from its reflectances by fitting the RF model directly from the data. Our results demonstrate how the combination of remote sensing and machine learning can assist in locating H. sosnowskyi, which aids in controlling its invasive expansion. Our approach provides a high detection accuracy of the plant, which is 96.93 %. © 2022 Teklay T. Yifter, Yury N. Razoumny, Alexander V. Orlovsky, Vasily K. Lobanov.

Авторы
Yifter T.T. , Razoumny Y.N. , Orlovsky A.V. , Lobanov V.K.
Издательство
Institute of Computer Science
Номер выпуска
6
Язык
Английский
Страницы
1357-1370
Статус
Опубликовано
Том
14
Год
2022
Организации
  • 1 Department of Mechanics and Control Processes, Academy of Engineering, Peoples’ Friendship University of Russia, RUDN University, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
Ключевые слова
Google Earth Engine; Heracleum Sosnowski Manden; invasive plants; machine learning; random forest
Цитировать
Поделиться

Другие записи

Bredis M.A., Lomakina O.V., Borisova A.S., Lazareva O.V.
Новые исследования Тувы. Ламажаа Чимиза Кудер-ооловна. 2022. С. 276-293