Operational matrix approach for solving variable-order fractional integro-differential equations

In this paper, we use shifted fourth-kind Chebyshev polynomials to construct the operational matrix technique for numerical solution of variable-order fractional integro-differential equations (VO-FIDEs). We construct both fractional differential and integral operational matrices. These matrices coincide with the Chebyshev collocation method used to transform the main problem into an algebraic system of equations. By solving this system of equations we get the numerical solution of the original equation. Finally, we give several numerical examples to show that the numerical technique is applicable and computationally efficient. © 2023 Elsevier Inc. All rights reserved.

Авторы
Agarwal P. , El-Sayed A.A.
Издательство
Elsevier
Язык
Английский
Страницы
301-317
Статус
Опубликовано
Год
2022
Организации
  • 1 Department of Mathematics, Anand International College of Engineering, Jaipur, India
  • 2 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, United Arab Emirates
  • 3 Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 4 Department of Mathematics, Faculty of Science, Fayoum University, Fayoum, Egypt
  • 5 Department of Mathematics, University of Technology and Applied Sciences-AlRustaq, Rustaq, Oman
Ключевые слова
Fourth-kind Chebyshev polynomials; Riemann-Liouville integral operator; Spectral collocation method; Variable-order Caputo differential operator; Variable-order fractional integro-differential equations
Цитировать
Поделиться

Другие записи

Akulovich A.V., Buzova E.V., Borovskaya A.B., Yakunina L.A., Kupets T.V., Matelo S.K.
Клиническая стоматология. Общество с ограниченной ответственностью ТБИ Компания. Том 25. 2022. С. 138-143