Explainable Machine Learning Methods for Classification of Brain States during Visual Perception

The aim of this work is to find a good mathematical model for the classification of brain states during visual perception with a focus on the interpretability of the results. To achieve it, we use the deep learning models with different activation functions and optimization methods for their comparison and find the best model for the considered dataset of 31 EEG channels trials. To estimate the influence of different features on the classification process and make the method more interpretable, we use the SHAP library technique. We find that the best optimization method is Adagrad and the worst one is FTRL. In addition, we find that only Adagrad works well for both linear and tangent models. The results could be useful for EEG-based brain–computer interfaces (BCIs) in part for choosing the appropriate machine learning methods and features for the correct training of the BCI intelligent system. © 2022 by the authors.

Авторы
Islam R. , Andreev A.V. , Shusharina N.N. , Hramov A.E.
Журнал
Издательство
MDPI AG
Номер выпуска
15
Язык
Английский
Статус
Опубликовано
Номер
2819
Том
10
Год
2022
Организации
  • 1 Laboratory of Neuroscience and Cognitive Technology, Innopolis University, 1 Universitetskaya Str, Innopolis, 420500, Russian Federation
  • 2 Baltic Center of Neurotechnology and Artificial Intelligence, Immanuil Kant Baltic Federal University, 14 A. Nevskogo ul., Kaliningrad, 236041, Russian Federation
  • 3 Department of Mechanical Engineering and Instrumentation, Engineering Academy, Peoples’ Friendship University of Russia (RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
brain state; deep learning; EEG; interpretable models; visual perception
Цитировать
Поделиться

Другие записи