Degenerating sequences of conformal classes and the conformal Steklov spectrum

Let be a compact surface with boundary. For a given conformal class c on the functional is defined as the supremum of the kth normalized Steklov eigenvalue over all metrics in c. We consider the behavior of this functional on the moduli space of conformal classes on. A precise formula for the limit of when the sequence degenerates is obtained. We apply this formula to the study of natural analogs of the Friedlander-Nadirashvili invariants of closed manifolds defined as, where the infimum is taken over all conformal classes c on. We show that these quantities are equal to for any surface with boundary. As an application of our techniques we obtain new estimates on the kth normalized Steklov eigenvalue of a nonorientable surface in terms of its genus and the number of boundary components. ©

Авторы
Издательство
Canadian Mathematical Society
Номер выпуска
4
Язык
Английский
Страницы
1093-1136
Статус
Опубликовано
Том
74
Год
2022
Организации
  • 1 Département de Mathématiques et de Statistique, Pavillon André-Aisenstadt, Université de Montréal, Montréal, H3C 3J7, QC, Canada
  • 2 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
  • 3 Faculty of Mathematics, National Research University Higher School of Economics, 6 Usacheva Street, Moscow, 119048, Russian Federation
Ключевые слова
AMS subject classification 53-XX 35P15
Цитировать
Поделиться

Другие записи