A Note on Parabolic Difference Equations on Manifold

In this work, we consider nonlocal boundary value problems for parabolic equations on manifold. We set up the first order of accuracy difference scheme for the numerical solution of nonlocal boundary value problems for parabolic equations on circle. For the solutions of the difference scheme, we establish the stability estimates and coercivity estimates in various Hölder norms for the solutions of such boundary value problems. Furthermore, numerical results are given. © 2022 American Institute of Physics Inc.. All rights reserved.

Авторы
Ashyralyev A. , Hezenci F. , Sozen Y.
Сборник материалов конференции
Язык
Английский
Статус
Опубликовано
Номер
060003
Том
2483
Год
2022
Организации
  • 1 Department of Mathematics, Near East University, TRNC Nicosia 10, Mersin, Turkey
  • 2 Peoples' Friendship University of Russia, RUDN University, Ul Miklukho Maklaya 6, Moscow, 117198, Russian Federation
  • 3 Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan
  • 4 Department of Mathematics, Duzce University, Konuralp, Duzce, 81620, Turkey
  • 5 Department of Mathematics, Hacettepe University, Beytepe, Ankara, 06800, Turkey
Ключевые слова
Difference equations on manifolds; difference schemes; self-adjoint positive definite operator; well-posedness
Цитировать
Поделиться

Другие записи