On highly efficient simultaneous schemes for finding all polynomial roots

This paper develops optimal family of fourth-order iterative techniques in order to find a single root and to generalize them for simultaneous finding of all roots of polynomial equation. Convergence study reveals that for single root finding methods, its optimal convergence order is 4, while for simultaneous methods, it is 12. Computational cost and numerical illustrations demonstrate that the newly developed family of methods outperformed the previous methods available in the literature. © 2022 The Author(s).

Авторы
Shams M. , Rafiq N. , Kausar N. , Agarwal P. , Mir N.A. , Li Y.-M.
Журнал
Издательство
World Scientific Publishing Co.
Номер выпуска
10
Язык
Английский
Статус
Опубликовано
Номер
2240198
Том
30
Год
2022
Организации
  • 1 Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad, 44000, Pakistan
  • 2 Department of Mathematics, National University of Modern Languages (NUML), Islamabad, Pakistan
  • 3 Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Esenler, Istanbul, 34210, Turkey
  • 4 Department of Mathematics, Anand International College of Engineering, Jaipur, Rajasthan, 303012, India
  • 5 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow, 117198, Russian Federation
  • 6 Russian Federation and Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, United Arab Emirates
  • 7 International Center for Basic and Applied Sciences, India, Jaipur, 302029, India
  • 8 Department of Mathematics, Huzhou University, Huzhou, 313000, China
  • 9 Institute for Advanced Study Honoring Chen Jian Gong, Hangzhou Normal University, Hangzhou, 311121, China
Ключевые слова
Computational Efficiency; Convergence Order; CPU-Time; Iterative Technique; Multiple Roots
Цитировать
Поделиться

Другие записи