Probability operator of a harmonic oscillator

A unique linear rule of constructing quantum operators defined by the probability operator {Mathematical expression} for coordinates and momenta, is considered. {Mathematical expression} is assumed to be a normalized, positive definite operator, establishing a dynamical correspondence between the classical and quantum Poisson brackets. It is shown that such an operator exists in the case of a harmonic oscillator. The principal implications of the suggested rule of constructing the operators of physical quantities are determined, in comparison with the corresponding results of conventional quantum mechanics. © 1983 Plenum Publishing Corporation.

Авторы
Журнал
Издательство
Kluwer Academic Publishers-Plenum Publishers
Номер выпуска
10
Язык
Английский
Страницы
956-960
Статус
Опубликовано
Том
25
Год
1982
Организации
  • 1 Patrice Lumumba University of Peoples' Friendship, Russia
Цитировать
Поделиться

Другие записи