Distribution function of lattice systems of finite dimensions with respect to the number of particles in a large canonical ensemble

One method to identify a phase transition of the first kind is to study the distribution function of a system with respect to the number of particles in a large canonical ensemble, i.e., the probability that the system contains N particles. The presence of multiple extrema in the distribution function attest to the possibility of phase transitions. Recurrence relations which make it possible to calculate the distribution function of systems with respect to the number of particles in a large canonical ensemble have been obtained for one-dimensional lattice systems of finite dimensions.

Авторы
Редакторы
-
Издательство
-
Номер выпуска
2
Язык
Английский
Страницы
309-312
Статус
Опубликовано
Подразделение
-
DOI
-
Номер
-
Том
51
Год
1989
Организации
  • 1 P. Lumumba Peoples' Friendship Univ, Russian Federation
Ключевые слова
Canonical Ensembles; Distribution Functions; Landau Theory; Lattice Systems; Periodic Boundary Conditions; Recurrence Relations; Crystals - Statistical Mechanics; Materials - Phase Transitions; Mathematical Techniques - Boundary Value Problems; Probability - Mathematical Models; Solids - Crystal Lattices; Statistical Mechanics
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/1188/