Maximum principle and second-order conditions for minimax problems of optimal control

In this paper, we study the optimal control problem of minimizing the functional J(x, u)=maxt1≤t≤t2φ{symbol}(x(t), t). We formulate and prove necessary optimality conditions for this problem. We establish the equivalence between the initial minimax problem and a problem involving a terminal functional and phase constraints. © 1992 Plenum Publishing Corporation.

Авторы
Arutyunov A.V. 1 , Silin D.B.2 , Zerkalov L.G. 3
Редакторы
-
Издательство
Kluwer Academic Publishers-Plenum Publishers
Номер выпуска
3
Язык
Английский
Страницы
521-533
Статус
Опубликовано
Подразделение
-
Номер
-
Том
75
Год
1992
Организации
  • 1 Department of Differential Equations and Functional Analysis, Peoples Friendship University, Moscow, Russian Federation
  • 2 Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russian Federation
  • 3 Department of Mathematical Analysis, Peoples Friendship University, Moscow, Russian Federation
Ключевые слова
controllability conditions; Maximum principle; optimal control
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/1035/