Estimates for continuity envelopes and approximation numbers of generalized bessel potentials over lorentz space

In this paper we study spaces of Bessel potentials in n-dimensional Euclidean spaces. They are constructed on the basis of a rearrangement-invariant space (RIS) by using convolutions with Bessel– MacDonald kernels. The differential properties of potentials are characterized by their modulus of continuity of order k in the uniform norm. Specifically, the treatment covers spaces of Generalized Bessel potentials constructed over the basic weighted Lorentz space. In particular, we determine continuity envelope function. This result is then applied to estimate the approximation numbers of Generalized Bessel potentials when Generalized Bessel potentials constructed over the basic weighted Lorentz space. © 2021, Universitatea de Vest Vasile Goldis din Arad. All rights reserved.

Авторы
Издательство
Universitatea de Vest Vasile Goldis din Arad
Номер выпуска
2
Язык
Английский
Страницы
1201-1206
Статус
Опубликовано
Том
25
Год
2021
Организации
  • 1 Mathematical Institute named S. M. Nikolskii Peoples’ Friendship University of Russia, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
Ключевые слова
Approximation numbers; Continuity envelopes; Generalized Bessel; Lorentz space; Modulus of continuity; Rearrangement invariant space
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72289/
Поделиться

Другие записи